应用简介
designexpert 12是一个新的实验设计软件,它集成了设计和分析功能,帮助科学家更好地研究实验。实验结果以直观的图标形式显示。它为用户提供了一个混合或组合的因素和组成部分,为实验奠定了良好的实验基础环境。在这种环境下,可以进一步改进实验产品的生产工艺。该软件还支持旋转三维图形和交互式二维图形。如果在实验设计过程中遇到问题,可以建立具有在线功率计算能力,添加积木和中心点,分析问题产生的原因,满足您的需求。
【功能特点】
1、Logistic回归
使用二进制数据(每个单元格为0或1)的响应将在“变换”选项卡上具有“逻辑回归”选项。
Logistic回归模型术语显着性的卡方检验。
麦克法登调整 McFadden和Tjur伪R平方统计数据可用于逻辑回归。
可以使用基于成功或失败概率的标准来优化二元响应。
2、图表
模型图已移至笔记本界面。
您可以在并排视图中同时创建多个图形。
所有图形现在都有一个可停靠的图例,可以独立于图形移动。
图例也可以通过右键单击菜单停靠在图表的右侧或底部。
可以通过右键单击菜单单独切换图例中的元素。
通过将图例悬停在其上,保持控件和使用鼠标滚轮,可以增大或减小图例的字体大小。
可以在“图表列”节点中生成任何数据列的直方图。
您可以在“图形列”散点图上设置第三个轴,使其成为三维散点图。
效果图已移至笔记本界面,可以并排比较。
现在可以在观察值和预测值之间切换立方体图。
单击“交互”或“单因子”图中的点时的成对比较现在可在单独的工具箱中使用。
3、分类编码
分类变量现在可以使用治疗对比,将每个级别与用户选择的对照或参考级别进行比较。
Design Expert还可以使用Helmert对比,将每个级别与之前级别的平均值进行比较。
序数对比不再需要数字。 如果它们不是数字,则假定它们是均匀间隔的(例如“低”,“中”,“高”)。
ANOVA中显示了分类因子的对比类型的选择。
4、组合模型
Kowalski-Cornell-Vining(KCV)型号可作为型号订单选择。
在建造时,KCV模型为完整的交叉模型提供了更有效的替代方案。
在分析过程中也可以选择KCV模型。
【使用说明】
一、目标和设计选项
紧接在目标之下推荐的设计是建议的最低设计。对于更复杂的目标,也可以使用更有能力的设计。更大,更复杂的设计将产生更好的估计并得出更有力的结论。
当目标是优化过程并且有超过6个因素时,通常在筛选目标开始实验并采取小步骤,在每个步骤中更多地了解过程,并在此基础上进行构建更有效率。与一个大型设计相比,在学习过程中采取一些小步骤通常会导致更少的运行和更好的整体理解。
1、最小运行
如果您需要快速排除故障并快速获得结果。
测试产品,工艺或方法的坚固性。现实世界的目标是验证测试方法是否适用于所有操作员,或者当在预期的因子范围内使用时,过程是否稳定。
对于上述两种情况,任务是运行最少的运行次数,但是,设法同时测试所有变量。如果没有重要因素,那么对因子的更改不会显着影响产品,流程或方法。如果某些事情很重要,我们可以断定这个过程并不稳定。但要了解不稳定的原因,后续实验是必要的。
对于上述情况,请使用颜色编码为红色的两级析因设计(分辨率III)。
2、筛选
筛选实验用于将大量潜在因素缩小到较小的因素列表,这些因素对过程有重大影响。
对于上述使用,采用黄色(分辨率IV)或最小运行筛选设计的双级因子设计。另一种选择是响应面,过饱和的最终筛选设计。
后续实验对于表征交互并理解为什么某些因子组合起作用或失败是必要的。
3、表征
表征主效应,相互作用甚至曲率,以更好地理解正在研究的过程。
对于上述使用,采用颜色编码为白色(全因子)或绿色(分辨率V或更高)的两级因子设计。其他可接受的两级设计是Min-RunCharacterize和IrregularResV设计。将中心点添加到任何两级因子设计以估计曲率效应。
4、优化
通过找到最佳因子设置来优化流程,以实现目标,例如为每个响应单独最大化,最小化或达到目标值。
对于上述任何一种情况,请使用适合问题的响应面设计。标准设计,如中央复合材料或Box-Behnken,适用于二次模型。优化设计具有更大的灵活性,允许更高阶的模型。